Diffusive nature of thermal transport in stanene.
نویسندگان
چکیده
Using the phonon Boltzmann transport formalism and density functional theory based calculations, we show that stanene has a low thermal conductivity. For a sample size of 1 × 1 μm(2) (L × W), the lattice thermal conductivities along the zigzag and armchair directions are 10.83 W m(-1) K(-1) and 9.2 W m(-1) K(-1) respectively, at room temperature, indicating anisotropy in thermal transport. The low values of thermal conductivity are due to large anharmonicity in the crystal resulting in high Grüneisen parameters, and low group velocities. The room temperature effective phonon mean free path is found to be around 17 nm indicating that the thermal transport in stanene is completely diffusive in nature. Furthermore, our study reveals the relative importance of the contributing phonon branches and that, at very low temperatures, the contribution to lattice thermal conductivity comes from the flexural acoustic (ZA) branch and at higher temperatures it is dominated by the longitudinal acoustic (LA) branch. We also show that the lattice thermal conductivity of stanene can further be reduced by tuning the sample size and creating rough surfaces at the edges. Such tunability of lattice thermal conductivity in stanene suggests its applications in thermoelectric devices.
منابع مشابه
Low lattice thermal conductivity of stanene
A fundamental understanding of phonon transport in stanene is crucial to predict the thermal performance in potential stanene-based devices. By combining first-principle calculation and phonon Boltzmann transport equation, we obtain the lattice thermal conductivity of stanene. A much lower thermal conductivity (11.6 W/mK) is observed in stanene, which indicates higher thermoelectric efficiency ...
متن کاملTensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene.
Based on first principles calculations and self-consistent solution of the linearized Boltzmann-Peierls equation for phonon transport approach within a three-phonon scattering framework, we characterize lattice thermal conductivities k of freestanding silicene, germanene and stanene under different isotropic tensile strains and temperatures. We find a strong size dependence of k for silicene wi...
متن کاملCharacterization of unsteady double-diffusive mixed convection flow with soret and dufour effects in a square enclosure with top moving lid
The present study considers the numerical examination of an unsteady thermo-solutal mixed convection when the extra mass and heat diffusions, called as Soret and Dufour effects, were not neglected. The numerical simulations were performed in a lid-driven cavity, where the horizontal walls were kept in constant temperatures and concentrations. The vertical walls were well insulated. A finite vol...
متن کاملQuasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams.
Fourier theory of thermal transport considers heat transport as a diffusive process where energy flow is driven by a temperature gradient. However, this is not valid at length scales smaller than the mean free path for the energy carriers in a material, which can be hundreds of nanometres in crystalline materials at room temperature. In this case, heat flow will become 'ballistic'--driven by di...
متن کاملEvidence of a graphene-like Sn-sheet on a Au(111) substrate: electronic structure and transport properties from first principles calculations.
Two dimensional nanostructures of group IV elements have attracted a great deal of attention because of their fundamental and technological applications. A graphene-like single layer of tin atoms, commonly called stanene, has recently been predicted to behave like a quantum spin Hall insulator. Here we report the atomic structure, stability and electron transport properties of stanene stabilize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 21 شماره
صفحات -
تاریخ انتشار 2016